Approximation algorithms for homogeneous polynomial optimization with quadratic constraints
نویسندگان
چکیده
In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic constraints. Such optimization models have wide applications, e.g., in signal processing, magnetic resonance imaging (MRI), data training, approximation theory, and portfolio selection. Since polynomial functions are nonconvex in general, the problems under consideration are all NP-hard. In this paper we shall focus on polynomial-time approximation algorithms. In particular, we first study optimization of a multi-linear tensor function over the Cartesian product of spheres. We shall propose approximation algorithms for such problem and derive worst-case performance ratios, which are shown to depend only on the dimensions of the models. The methods are then extended to optimize a generic multi-variate homogeneous polynomial function with spherical constraints. Likewise, approximation algorithms are proposed with provable relative approximation performance ratios. Furthermore, the constraint set is relaxed to be an intersection of co-centered ellipsoids. In particular, we consider maximization of a homogeneous polynomial over the intersection of ellipsoids centered at the origin, and propose polynomial-time approximation algorithms with provable worst-case performance ratios. Numerical results are reported, illustrating the effectiveness of the approximation algorithms studied.
منابع مشابه
A Semidefinite Relaxation Scheme for Multivariate Quartic Polynomial Optimization with Quadratic Constraints
We present a general semidefinite relaxation scheme for general n-variate quartic polynomial optimization under homogeneous quadratic constraints. Unlike the existing sum-of-squares (SOS) approach which relaxes the quartic optimization problems to a sequence of (typically large) linear semidefinite programs (SDP), our relaxation scheme leads to a (possibly nonconvex) quadratic optimization prob...
متن کاملApproximation Algorithms for Discrete Polynomial Optimization
In this paper, we consider approximation algorithms for optimizing a generic multivariate polynomial function in discrete (typically binary) variables. Such models have natural applications in graph theory, neural networks, error-correcting codes, among many others. In particular, we focus on three types of optimization models: (1) maximizing a homogeneous polynomial function in binary variable...
متن کاملApproximating Global Quadratic Optimization with Convex Quadratic Constraints
We consider the problem of approximating the global maximum of a quadratic program (QP) subject to convex non-homogeneous quadratic constraints. We prove an approximation quality bound that is related to a condition number of the convex feasible set; and it is the currently best for approximating certain problems, such as quadratic optimization over the assignment polytope, according to the bes...
متن کاملQuadratic third-order tensor optimization problem with quadratic constraints
Quadratically constrained quadratic programs (QQPs) problems play an important modeling role in many diverse problems. These problems are in general NP hard and numerically intractable. Semidefinite programming (SDP) relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation pr...
متن کاملApproximation Algorithms for Quadratic Programming
We consider the problem of approximating the global minimum of a general quadratic program (QP) with n variables subject to m ellipsoidal constraints. For m = 1, we rigorously show that an-minimizer, where error 2 (0; 1), can be obtained in polynomial time, meaning that the number of arithmetic operations is a polynomial in n, m, and log(1==). For m 2, we present a polynomial-time (1 ? 1 m 2)-a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 125 شماره
صفحات -
تاریخ انتشار 2010